Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Indian J Exp Biol ; 1999 Sep; 37(9): 849-58
Article in English | IMSEAR | ID: sea-62990

ABSTRACT

The increasing use of heterobifunctional cross-linking agents in the design of defined conjugates for selective targeting and inducing immune response has prompted us to study the role of epsilon-NH2 group modification of oLH subunits, their recombination and effect on immunoreactivity, receptor binding and biological activity. The epsilon-NH2 groups of alpha oLH and beta oLH subunits were separately modified by using SMPT. The alpha oLH-SMPT modified derivatives hybridize to beta oLH. Similarly, the beta oLH-SMPT derivatives recombined with alpha oLH. The recombination was judged by gel filtration chromatography and RP-HPLC analysis. The sequential modification of subunits led to progressive reduction in immunoreactivity and receptor binding activity. The modification of six or more epsilon-NH2 groups in alpha oLH although recombine fully with native beta oLH but failed to react to anti-oLH antibody. Moreover, the steroidogenic activity was also abolished. Introduction upto four SMPT groups in alpha oLH compromised immunological and biological activities but further addition of two or more SMPT groups completely abolished antibody reactivity, receptor binding and steroidogenic activity indicating the importance of later two amino groups in the receptor binding and steroidogenic activity. The present investigation clearly demonstrate that only 1:2-3 molar ratio of oLH subunits:SMPT could generate the site(s) in the subunits of the oLH that retained reasonable immunological, receptor binding and biological activity of the hormone. Therefore, this molar ratio may be used in future for the design and synthesis of bioeffective hormonotoxins.


Subject(s)
Animals , Cross-Linking Reagents/chemistry , Luteinizing Hormone/chemistry , Protein Binding , Radioligand Assay , Receptors, LH/metabolism , Sheep , Succinimides/chemistry
2.
Braz. j. med. biol. res ; 29(2): 249-58, Feb. 1996. graf, ilus
Article in English | LILACS | ID: lil-161678

ABSTRACT

Although N-acetylaspartylglutamate (NAAG) is one of the neuropeptides found in highest concentrations in the mammalian central nervous system, its functional role in neuronal signaling has not been definitively established. In some neuronal populations, NAAG is concentrated in nerve terminals and thus, it may play a role in the cytoplasmic events underlying neurotransmitter exocytosis. In the present study we have validated the use of the synthetic derivative NAAG-acetoxymethyl triester (NAAG.AM) as a tool to increase the intracellular levels of the peptide and assessed the ability of NAAG to regulate [3H]-dopamine ([3H]-DA) secretion in PC12 cells. Enzymatic degradation of NAAG.AM by nonspecific brain esterases resulted in the progressive formation of NAAG and succinimidyl-NAAG (Asu-NAAG). However, only 8 percent of NAAG.AM was converted to NAAG. Significant amounts of NAAG (1 nmol/mg protein) were demonstrable in cultures of the neuroblastoma cell line N2A following incubation with NAAG.AM for 2 h, with the concentration of (Asu)-NAAG being at least 100-fold higher. The pheochromocytoma cell line PC12 was used to assess the influence of loaded NAAG derivatives on [3H]-DA exocytosis. Incubation with 0.1-1 mM NAAG.AM did not affect the basal efflux or total content of [3H]-DA. However, it induced a dose-dependent decrease of [3H]-DA secretion in response to 56 mM KCI depolarization reaching an inhibition of 49 percent with 1 mM NAAG.AM. In contrast, NAAG.AM did not affect secretion induced by the calcium ionophore A23187 (100 microM). The present study validates the use of NAAG.AM as a tool to load NAAG derivatives into intact cells and provides preliminary evidence for an intracellular role of the peptide.


Subject(s)
Animals , Rats , /enzymology , Dipeptides/analysis , Dopamine/metabolism , In Vitro Techniques , Chromatography, High Pressure Liquid , Dipeptides/chemistry , Dipeptides/physiology , Histamine H1 Antagonists/chemistry , Neuroblastoma/pathology , Rats, Sprague-Dawley , Succinimides/chemistry
3.
Egyptian Journal of Chemistry. 1994; 37 (3): 283-93
in English | IMEMR | ID: emr-107651
SELECTION OF CITATIONS
SEARCH DETAIL